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FURTHER STUDIES ON DYNAMIC CRACK BRANCHING

by

M. Ramulu,* A. S. Kobayashi,* B. S.-J. Kang,* and D. B. Barker**

ABSTRACT

The newly derived dynamic crack branching criterion is verified by dynam-

ic photoelastic analysis of dynamic crack branchings in thin polycarbonate,

single edged crack tension specimens. Successful crack branching was observed

in four specimens and unsuccessful branchings in another. Crack branching

consistently occurred when the necessary condition of KIb = 3.3 MPa miind the

sufficient condition of ro = rc = 0.7 m were satisfied simultaneously. In

the unsuccessful branching test the necessary conditon was not satisfied since

K1 was always less than Kib.

INTRODUCTION

Crack branching represents one extreme of the large range of dynamic

crack propagation behaviors and has been the subject of numerous theoretical

* rand experimental investigations, several of which can be found in References

[1,2]. Recently, the authors derived a crack curving and a branching criteria

based on the directional stability of & propagating crack [3,4). The crack

* Research Assistant Professor, Professor and Graduate Student, respectively,
UniVersity of Washington, Department of Mechanical Engineering,

4 . Seattle, WA 98195
**Yisitting. Associate Professor, University of Washington, Department of
MeciancalEngineering at the time of this writing.
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curving criteria is a micro-mechanical model of continuous micro-flaw growth

and coalescence in the vicinity of the moving crack tip. It assumes that the

crack is momentarily kinked or bifurcated, when an off-axis micro-flaw con-

nects with the crack tip and is the dynamic extension of the crack curving

criterion proposed by Streit and Finnie I

The dynamic crack curving criterion has been used to predict the crack

kinking angle of a propagating crack under pure mode I as well as mixed mode

condtions[3]. The crack branching criterion on the other hand, requires a

critical stress intensity factor to trigger crack branching and a crack curv-

ing criterion for predicting the crack branching angle [4,6). The objective

of this paper is to provide further evidence in support of the dynamic crack

branching criterion advanced by the authors.

CRACK BRANCHING CRITERION

The crack branching criterion [6) requires# as the sufficiency condition,

a crack curving criterion [4]. The latter is based on the postulate that the

micro-cracks ahead of the crack tip dictate the direction of crack propaga-

tion. When an off-axis, i.e., 0 / O micro-void, which is within a critical

distance, rc, to the crack tip, is actuated by a critical crack tip stress

field, it deflects the crack from its otherwise self-similar propagation

path. The distance between the micro-void and the crack tip, ro, is a

characteristic distance which is governed by the singular state of stress as

well as the stress acting parallel to the crack, commonly referred to as

either the remote stress or the non-singular stress component, aox. The

critical distance, rc, is assumed to be a material property.
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The angular orientation of this critical micro-void is determined by the

maximum circumferential stress criterion, as modified by Ramulu and Kobayashi

[3], which assumes that the crack will extend towards the maximum circumfer-

ential stress at a distance, r, away from the rapidly propagating crack tip.

Based on this assumption, under pure mode I loading# i.e., K, 0, KII = 0,

the condition for self-similar propagation of a straight crack is obtained by

setting 0 = 0 as

r - v~ (c,c1,c1 roVo(CCI 2)]

where 
ox

V( 2 4S1 2

2  S 2

2 12 2l 7
c 1  C2

c = crack velocity, m/s

cI = dilatational wave velocity, m/s

c2 = distortional wave velocity, m/s

Here, Ki, o and r , are the mode I stress intensity factor, remote stress
I ox 0

and the characteristic, distance, respectively, and can be determined from the

current dynamic state of stress. The onset of crack curving of a rapidly

propagating crack is governed by the stability of the propagating straight

crack and is assumed to occur when r 0  rc. This rc is a characteristic

distance derived from a directional stability criterion involving the critical

0 crack tip state of stress where 0 suddenly becomes non-zero. The correspond-

ing angle, 6c, for a maximum circumferential stress can be determined from a

transcendental relation involving the critical values of rc and e which isc c

derived from maximizing the off-axis maximum circumferential stress.

*The superscript "dyn" to identify dynamic stress intensity factor will not be
used in this paper, since all quantitites refer to dynamic values.
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The crack branching criterion, however, involves not only the critical rc

but also the maximum K, as a necessary condition for the growth of multiple

off-axis secondary cracks, and 4 C rc as a sufficiency condition for these

multiple cracks to kink simultaneously. Therefore, the crack branching

criterion can be stated as

K I = Max. KI = KIb Necessary condition

r 0  rc Sufficiency condition

The crack curving angle 6c determined from the latter crack curving criterion

is one half of the included crack branching angle.

Crack Branching in Homalite-O0 Fracture Specimens and Pressurized Pipes

The validity of the above crack curving and crack branching criteria was

verified by dynamic photoelasticity results of Homalit-100 single edged-notch

(SEN) specimens and the wedge-loaded, rectangular double-cantilever beam

(WL-RDCB) specimens with branched cracks [3,4,6]. Crack branchig consistently

occurred when the dynamic stress intensity factor reached a crack branching

stress Intensity factor KIb = 2.04 Parm and the characteristic distance ro

was less than critical distance of .rc = 1.3 mm. The crack branching angles of

bifurcated cracks in SEN specimens was smaller than in the WL-RDCB specimens.

Differences in crack branching angles are expected since the non-singular

stress, aox, in the SEN specimens is compressive and suppresses the branching

angle whereas the tensile cox in WL-RDCB enchances the branching angle. The

crack branching angles in pressurized steel of Reference [7,8J and aluminum

pipes of Reference [9] were also predicted by this crack branching criterion

[6].
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POLYCARBONATE FRACTURE SPECIMENS

In order to further verify the dynamic crack branching criterion, a

K: series of dynamic photoelastic fracture experiments involving thin polycarbon-

. ate fracture experiments were conducted. The single edged notch specimens

with blunt starter crack were 127 x 225 mm and 3.2 mm or 6.4 mm thick. At

fracture load, the crack propagated from the starter crack and branched. The

dynamic isochromatics surrounding the propagating crack were recorded with a

16 spark gap Cranz-Schardin camera system.

The fracture parameters of KI, KII and aox [10] associated with the

running crack were determined by least square fitting a theoretical dynamic

*mixed-mode stress field to the recorded dynamic isochromatics. The isochro-

matic fringe loops were digitized and analyzed on a PDP-11/44 computer. A

least square algorithm was used to determine KI, KI and aox from the

multi-point isochromatic data as reported in Ref. (11,12]. The estimated

fracture parameters were then used to geaerate the corresponding theoretical

isochromatics which were superposed on the experimental isochromatics for a

visual evaluation of the accuracy of the fitting process. A flow chart of

this on-line estimation of the dynamic fracture parameters from the recorded

dynamic isochromatics is shown in Figure 1.

RESULTS

4 Figure 2 shows two typical dynamic isochromatic patterns in a 3.2 m

thick, fracturing polycarbonate SEN specimen. At fracture load, the crack

initiated and propagated from a blunt starter crack with several unsuc-
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cessful attempts at branching prior to a successful branching.

Figure 3 shows K1, KIT and o variations associated with the crack
ox

branching experiment of Figure 2. The crack after initiation, propagated with

a gradual increase in its dynamic stress intensity factor. Immediately prior

to branching, the instantaneous dynamic stress intensity factor reached its

maximum value of 3.3 4Paim with negligible KIT and the associated remote

stress, Gox, attained a value of 11.2 14a. By smoothly extrapolating the

average KI and K I associated with the two branch cracks, an after-branching

K, = 2.2 Waai and KI1 0. _. 9 14aMi are obtained.

Figure 4 shows two frames of the 16-frame dynamic photoelastic record of

a propagating and branching crack in a 3.2 mm thick, polycarbonate SEN speci-

men. The crack emanated from a blunt saw cut crack and propagated through

much of the length of the plate with innumerable unsuccessful branching prior

to the successful crack branching. Note that post-arrest isochromatics sur-

rounding all unsuccessful branches exhibit a pure mode II crack tip deforma-

tion.

Figure 5 shows the dynamic KI, KI and a variations obtained from the
ox

photoelastic patterns preceding and after crack branching from the test shown

in Figure 4. Immediately prior to the crack branching, the extrapolated val-

ues of K, and Gox at the onset of crack branching yielded a branching stress

intensity factor of KI = 3.3 team. cox had gradually reached a value of 11.5

tWa, which is consistent with previous test results. Immediately after bran-

ching, extrapolated after-branching the average Mode I and Mode II stress in-

tensity factors of K I ; 2.2 Weam and K 1 -' + 0.9 Pam were obtained.

7
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Figure 6 shows four frames out of a 16-frame dynamic photoelastic record

of another test with multiple crack branching. Although no attempt was made

to analyze these post-branched multiple cracks# the data up to the onset of

successful crack branching yielded again K = KIb = 3.32 Wam and 0 = 11.72

Wa.

During the last ten plus years of dynamic crack branching study, we have

observed that either the unsuccessfully branched cracks or the completely

arrested cracks were under a pure mode II state. In the tests shown, the pure

mode II isochromatics were also seen (Figures 2,4,6) at the unsuccessful

branched cracks. Figure 7 shows two enlarged views of Test No. KB-8208024 of

Figure 5 with a mixed-mode isochromatic pattern arres of the branched crack.

Immediately after arrest the crack tip isochromatics transformed into mode II

isochromatics with the 45 p second interval. The mode I and mode II stress

intensity factors KI, K11 and aox prior to and a fter the crack arrest are: K,

= 1.36 MPavVi, K11  0.06 MPa~mm, o = -7.7 Wa and K1  0.05 Wavii, K11 = 0.711 0. 6 WaT ox I

Wa m, cox = 8.06 MPa respectively. This suggests that the arrested branch

crack undergoes a mode II crack tip deformation during its unloading loading

process.

Figure 8 shows the variations of Kip K1 I and Cox associated with a

straight crack with unsuccessful branches in 3.2 mm thick specimen. Although

many attempts of branchign were observed, complete branching did not occur in

this specimen since the dynamic stress intensity factor was always less than

the KIb = 3.3 Wavm. Evaluations of two additional tests yielded the crack

branching data shown in Table 1. The critical values of rc ranged from 0.6 to

8
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0.8 M.

The crack velocity in the five tests were essentially constant and at

about 23 percent of the dilatational wave velocity. c1 = 1955 mps. The same

velocity was observed in the crack curving experiments conducted with this

material (13). It appears that this crack velocity is the maximum observed in

all the dynamic fracture tests involving polycarbonate.

Figure 9 shows the variations in characteristic distance ro, which was

computed by Equation (1), for the propagating cracks prior to the crack

branching in the five tests. Although the value of r0 has a scatterband of

0.5 to 0.9 mm, as shown in Figure 8# all extrapolated ro at crack branching

reached an average minimum value of 0.7 mm. This crack branching ro = rc =

0.7 mm represents the sufficiency condition for crack curving and is

consistent with the rc value determined from the crack curving experiments of

polycarbonate material [13).

Table 1 shows the crack branching stress intensity factors, KIb, the

critical distance. rc, and the measured and predicted crack branching angles

of all four test results of successful crack branchings. The dynamic stress

intensity factor at the onset of crack branching reached an average maximum

value of 3.3 MPam. This branching stress intensity factor was found to be

independent of the thickness of the specimen as well as the initial and

branching crack lengths.

9
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Crack branching angles were computed by using the crack curving criterion

r and are listed in Table 1. The average crack branching angle is 250. The

branching angle in this series of SEN specimens varied between 220 and 340 and

is consistent with our previous results involving Homalite-100 [4].

DISCUSSION

- Post-branching cracks In all tests always curved. Kalthoff [14),

observed that the direction of two branched cracks attraction or repulsion, is

controlled by KII/K I. The photoelastic patterns of running branched cracks

showed that the crack was perpendicular to the load direction. This strongly

* .suggests that the crack runs parallel to the compressive stress direction even

under mixed mode conditions which exist after branching. Therefore post-

branching crack propagation is also strongly dependent on the KI/K ratio as

well as on ox Figure 10 shows the post-branching crack curving of specimenox

No. 820822. The measured and calculated angles are marked on Figure 10 show

.that the crack curving angle gradually decreased in magnitude along with

increase in negative a and is in agreement with the numerical results ofox

Ref. [15].

Figure 11 shows the typical fracture surface in a 6.4 mm thick polycar-

*Q bonate SEN specimen associated with the crack branching. Clear mirror, mist

and hackle zones are visible. This fractured surface indicates that the 0ox

term which is the parallel stress in this specimen, is compressive and opens

* the micro-cracks in the form of tongues. Although the dynamic stress

intensoity factor is almost equal to Kib, the crack did not branch at the fine

hackle zone but branched when this hackle zone became rougher and when the

* sufficiency condition was met.

:IL



~CONCLUSIONS

1. Dynamic crack branching criterion proposed by the authors successfully
predicted the crack branching when the necessary condition of K =K
which triggered the generation of secondary cracks* and the sufficieA~y
condition of ro < r, which caused the crack tip diversion, were
satisfied.

2. A crack branching stress Intensity factor of K = 3.3 Wavn and

characteristic radius of rc = 0.7mm are determine for this polycarbonate
sheet.

3. Crack curving of post-branched cracks, attraction and repulsion, depends
not only on K I/KI but more importantly ona . Negative %ox suppresses
the crack curving irrespective of the sign 8f K]11 /K].
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SECOND FRAME, SEVENTH FRAMES

43r SECONDS 95 f4 SECONDS

THIRTENTH FRAME, SIXTEENTH FRAME,
176 ft SECONDS 262 SECONDS

FIGURE 6. TYPICAL DYNAMIC PHOTOELASTIC PATTERNS OF

MULTIPLE CRACK BRANCHING IN A POLYCARBONATE

4 SINGLE -EDGED NOTCH SPECIMEN.

SPECIMEN NO. KB-820824
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FIFTEENTH FRAME,

217 SECONDS

SIXTEENTH FRAME,

262 fu SECONDS

FIGURE 7. DYNAMIC ISOCHROMATIC PATTERNS BEFORE

l AND AFTER CRACK ARRESTING IN

BRANCHING CRACK. SPECIMEN NO. KB-820824
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